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ScienceDirect
The field of comparative psychology has traditionally focussed

on investigating the cognitive abilities of a small number of

mammal and bird species, but in order to understand the

evolution of cognition, it is essential to examine cognitive

abilities across a large range of vertebrates. Reptiles are

particularly interesting in this context as they represent a key

amniotic Class that do not develop under high, stable

temperatures, which can produce phenotypic variation in the

population. As their patterns of development differ substantially

from those of birds and mammals reptiles can be used to

investigate fundamental questions relating to factors shaping

cognition; questions that cannot be asked in mammals and

birds. In this review, we highlight some of these areas of interest

and consider how the emerging field of reptile cognition can

address crucial questions in cognitive science.
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Introduction
In order to understand the evolution of cognition, it is

essential to compare abilities across the animal kingdom.

Similarities and differences in performance of the same

task, alongside studying the structure of the brain, can

inform us about evolution of various cognitive abilities.

Traditionally, comparative psychology has focussed a lot

of attention on a very few species of mammals and birds

[1] and although the number and diversity of species

studied has been increasing, the bias towards mammals

and birds remains [2]. This work has provided strong

evidence that similar, potentially complex, cognitive

abilities (e.g. tool use) can be shared among distantly
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related species [3] whose evolutionary history and brain

structures differ substantially [4]. Reptiles are a key Class

in developing an understanding of the evolution of cog-

nitive abilities amongst amniotes. The study of similari-

ties and differences in their cognition can inform about

homologies and analogies of cognitive mechanisms across

the amniotes [5]. Traditionally reptiles are considered to

be limited in terms of their cognition [6], however, when

tested in physiologically appropriate conditions, they

show an impressive suite of cognitive abilities (e.g.

[7��,8��,9–11]).

Reptiles are also interesting in the study of cognition

because of their pattern of development. In birds and

mammals, development takes place under stable condi-

tions at high temperatures (though other sources of vari-

ation may influence the developmental environment (e.g.

[12])). In contrast, reptiles develop normally at a range of

temperatures, which fluctuate during incubation, and this

affects the phenotype of the hatchling in terms of sex,

growth rate, physiology, pigmentation, locomotion, and

behaviour (for reviews see [13,14]). Therefore, these

differing early environments may also be affecting the

cognitive abilities of individuals (e.g. [15–18]), which may

have long-term fitness implications. The stable environ-

ments of avian or mammal development do not produce

this range of phenotypic variability.

The study of reptiles is essential for understanding cog-

nitive evolution, but this group also allows us to test

fundamental hypotheses in the field of cognition which

simply cannot be tested using mammals and birds. This

review will summarise some key trends in the field,

wherever possible we will present all relevant recent

work, therefore, any imbalance in the species discussed

is likely to reflect the paucity of knowledge in the area.

We will then go on to outline some (but by no means all)

areas in which the use of reptiles can change our under-

standing of the processes shaping cognition before finally

discussing some future directions for the field.

The impact of early environment on cognition
Effects of incubation temperature

Personality and cognitive performance appear to be

linked within a species [19,20]. Therefore, differences

in personality are likely to play an important role in

understanding individual differences observed in cogni-

tive performance [20,21]. As such, it is essential to con-

sider the impact of early environmental conditions on

personality when considering its impact on cognition. Our
www.sciencedirect.com
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recent work assessed the impact of incubation tempera-

ture on bearded dragons (Pogona vitticeps) in two classic

personality tests — behaviour towards a novel object, and

behaviour in a novel environment — tests were repeated

after a few days and several months [22��]. Although

incubation temperature had a short-term effect on the

time spent in close proximity to a novel object, no long-

term effect was observed [22��]. Hence, variation in

incubation temperature within the normal range may

impact the development of behavioural traits rather than

long-term differences in personality. This in turn may

influence cognitive performance over development,

which could result in long-term differences in cognitive

ability.

Incubation temperature outside the normal range appears

to have an even greater effect on the behaviour of

offspring. Holleley et al. [23] showed that incubation at

a very high temperature (�32 �C) produced bearded

dragons that were genetically male but functionally

female. These animals exhibited behavioural traits that

appeared to be more male-like than genetic females. This

included behaviours associated with personality, for

example, higher activity levels and faster emergence from

a shelter [24�]. Though the mechanism underlying these

differences is unknown, incubation at extreme ends of

the temperature range produces offspring that behave in a

manner that is different from individuals incubated

within the normal temperature range; how this impacts

fitness has yet to be studied [24�].

Anatomical differences have been shown in brain struc-

ture and neuron density under different incubation con-

ditions; at hatching hot-incubated Eastern three-lined

skinks (Bassiana duperreyi) have greater neuron density

in parts of their medial cortex than their cooler incubated

counterparts [15]. This is supported by behavioural data

which shows that incubation environment impacts learn-

ing, with hot-incubated skinks of the same species per-

forming better in operant learning tasks than cold-incu-

bated individuals [16–18]. In contrast, bearded dragons

incubated in cooler conditions perform better in both an

operant [25] and a social learning task [26].

These studies suggest that differences in cognition are

not based on absolute differences in temperature but are

likely to reflect the environment in which the animals are

hatching into. Responses to incubation temperature are

likely to differ across species and habitat but a hotter

incubation environment may result in offspring that are

better adapted for survival in that temperature range

[22��]. This is contemporary because habitats across

the globe are being increasingly affected by environmen-

tal change, which creates novel challenges for the animals

living there [27]. Reptiles are particularly interesting in

this context because of their reliance on external sources

of heat [28]. Whilst genetic adaptation can be slow,
www.sciencedirect.com 
changes in behaviour may allow more rapid adaptation

to the novel conditions [29]. Cognitive abilities are likely

to be important in relation to this as they influence all

aspects of decision making [30].

Impact of early social environment

In contrast to mammals and birds, many reptile species

provide limited or no parental care of eggs or their

offspring [31]. This provides opportunities to control

and manipulate the social environment during early

stages of development so as to try to disentangle the

impacts of social environments on cognition.

Traditionally, social interactions among eggs have been

assumed to be limited as each egg is isolated by the shell.

Embryonic communication is well known in birds [32]

although its effects on subsequent social behaviour are

unknown. In reptiles, embryonic communication has

recently been reported [33–35] and has been shown to

influence behaviour post-hatching [36]. Hatchling water

snakes (Natrix maura) from eggs incubated in isolation

occupied a larger space, were more mobile and main-

tained less physical contact with conspecifics than coun-

terparts incubated in a clutch where eggs were in contact

[36].

The social environment post-hatching also seems to

impact behaviour. Veiled chameleons (Chamaeleo calyp-
tratus) reared in social isolation after hatching had a longer

latency to catch prey, exhibited more submissive behav-

iour and different colouration from their socially-reared

counterparts [37], although this has not yet been shown to

impact cognition. In the only study of its kind, Riley et al.
[38] reared the group living tree skink (Egernia striolata)
in social isolation or in groups. Contrary to the prediction

that those raised in a social environment would perform

better in a spatial cognitive task, results revealed that

social environment did not have an effect on learning in a

biologically relevant spatial task [38]. It remains unknown

whether these conditions would impact on performance

of a social cognition task.

Impact of early cue experience on spatial learning

Much cognition research with Chelonia has investigated

spatial navigation with the focus on the impressive long-

range navigational feats of sea turtles [39–41] and short-

range spatial learning in terrapins and tortoises [9,42–45].

There is evidence for use of geomagnetic cues, visual

cues and response-based strategies in these species [46].

The importance of early life experience on this ability has

been examined in the loggerhead turtle (Caretta caretta),
known to migrate the long distances across the Atlantic

Ocean. Geomagnetic cues were manipulated during incu-

bation, by placing magnets around the eggs, and were

shown to impact on hatchling navigation. The hatchlings

from the manipulated magnetic field swam in random
Current Opinion in Behavioral Sciences 2017, 16:126–130



128 Comparative cognition
directions, while the control group oriented towards the

migratory route, suggesting that experimental magnetic

fields during incubation can alter hatchlings ability to

navigate using magnetic cues [47].

Recent field studies on translocated terrapins (Chrysemys
picta) revealed that individuals under the age of four were

able to follow paths of adults [48��] but this ability was lost

in older individuals. This suggests that there may be a

critical phase for learning. This may be particularly

important in the context of changing environments.

Future directions
We have highlighted recent work investigating the

impact of early environmental conditions on reptile cog-

nition. Much remains unknown, however, we hope we

have demonstrated how the use of reptiles can provide

insight into exciting new cognitive questions. Future

studies need to involve more species and to fill in the

gaps in our understanding. In terms of the traditional

comparative approach, three key directions are required,

which are discussed below.

Development of model reptile species: Comparative

investigations of reptile cognition tend to discuss findings

relative to our understanding of similar processes in

mammals and birds. However, lack of data prevents an

effective and comprehensive comparison. Therefore, we

need to systematically replicate classic studies conducted

in mammals and birds with reptiles that we feel can be

representative model species. One candidate for this

would be the red-footed tortoise (Chelonoidis carbonaria),
a species that has proved adept across a number of

cognitive domains [49] including social [10,50,51], visual

[7��,52] and spatial cognition [9,42–44].

Cognition across a range of reptile species: Generally,

studies examine the cognitive abilities of one or two

species and consider it in terms of what reptiles may

be capable of. However, this approach would be unac-

ceptable in mammals and birds and simply highlights the

lack of knowledge for reptiles. In general, the choice of

species used for this work lacks a systematic approach.

Studies comparing the cognitive abilities of species

selected in a systematic way, on the basis of phylogeny,

would prove informative. Further, research on a wider

variety of species from all four orders of reptiles would

inevitably lead to a better understanding of phylogeny of

cognition.

The impact of behavioural ecology on reptile cognition:
Much work in comparative cognition uses the behavioural

ecology of closely related species to predict differences in

cognitive abilities [53]. This approach has proved

extremely fruitful and should be harnessed in the field

of reptile cognition. Some early research has revealed that

feeding ecology impacts reversal but not spatial learning
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in congeneric lizards [54]. However, much more work

which uses this approach with a wider range of ecological

factors and over a greater variety of taxa are required.

Understanding the adaptive value of cognition

To understand the adaptive value of cognition, it is

essential to develop biologically appropriate, hypothesis

driven tests that can be run in the laboratory or the field.

Field experiments will inherently have less control than

those in laboratory settings, however, captive work cannot

tell us about the selection pressures that operate under

natural conditions. It is thus essential to integrate both

laboratory and field work to better understanding of

mechanisms and adaptation value of reptile cognition.

This must be investigated in terms of the adaptive value

to the animal, but also the impact that the cognitive

processes may have on the ecosystem around it [7��,55].

Conclusion
In order to gain a fuller understanding of the evolution of

cognition, it is essential to investigate the cognitive

abilities of reptiles. To do this appropriately, we need

to: firstly, conduct work with model species that are

comparable to the vast amount of research undertaken

with mammals and birds; secondly, compare species that

are of interest in terms of phylogeny; and thirdly, compare

similar species that differ in terms of their behavioural

ecology. In addition to fundamental comparative

research, the use of reptiles can allow us to test critical

hypotheses, such as the impact of early environment on

cognitive abilities, in highly controlled environments

which are difficult to investigate in mammals and birds.

In conclusion, engaging with the study of ‘cold-blooded

cognition’ can only be informative and fascinating.
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